VM Live Migration Deep
Dive in OCP-V

Yumei Huang Xiaohui Li

yuhuang@redhat.com xiaohli@redhat.com

Agenda

» VM live migration in OCP-V
» Implementation in QEMU-KVM
» Live migration features in QEMU-KVM

» Performance comparison between VMWare and KVM

VM live migration in OCP-V

—_ Red Hat .
— 2 ¢ kube:admin ~
S OpenShift © ©
General
You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow others to log in.
Project: default ~ Namespace @B default
. : 2 ¢ = Node
VirtualMachines > VirtualMachine details A

rhel9-yuhuang1 < Running 5] G il B VirtualMachinelnstgnce @) rhel9-yuhuang!

Stop Pod [Q virt-launcher-rhel9-yuhuangl-j

< Overview Metrics ~ YAML Configuration Events Console Sn:
Restart Owner N
Pause
Detai ler
etails Alerts (0) Cléiia
General
Take snapshot
Name rhel9-yuhuangl VNC console 4
Compute > Namespace @ default
Status (5] Running Migrate VirtualMachine to a)
~ 9 different Node Co command IW Node m virt-siwang-418-8qcbg-worker-0-z2c2g
Created Mar 25, 2025, Storage g = = —_—
Open web console [£ 9 VirtualMachinelnstance @D rhel9-yuhuang
236PM (3 Sl g
hours ago)

inning Pod [Q virt-launcher-rhel9-yuhuangl-2kfj5]/

Owner No owner

VM live migration in OCP-V

Red Hat

OpenShift a3 © @ kube:admin v

u are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow others to log in.

&8 Administrator

Project: All Projects +

Home

Virtualization Download the virtct] command-line utility ®
Operators

Overview Top ¢

sumer Migrations Settings
Workloads

Virtualization Vir inf Last 15 minutes v

Overview
Migrations Limitations Bandwidth consumption
Catalog

VirtualMachines

Templates

Bootable v
Mi nPo
Checkups
Networking
M1 Succeeded

Storage

Y Filter v Name rch by nar m
Builds

VirtualMachine name 1 Namespace Status Source Target MigrationPolicy VirtualMachinelnstanc... Created

@D rhelo-yuhuang @ cefault @ Succeeded @ virt-siwang-4 @D volicy-peach-boa-13 @D helo-yuhuang @ 2 minutes ago H

worker-O-pving, worker-0

Observe

8-8qcbg t-siwang-418-8

Compute

M live migration in OCP-V ks

% Administrator

You are logged in as a temporary administrative user. Update

Create MigrationPolicy Edit YAML

M i g ration Po | i Cy MigrationPolicy help you differentiate between various workloads. Adding MigrationPolicy will allow you to set priorities and security

Operators segregation per each workload.

MigrationPolicy name *

> Configurations Workloads

Virtualization Unique name of the MigrationPolicy

policy-peach-boa-13

* Auto converge

Overview Description

* Post-copy

VirtualMachines

Configurations

- Bandwidth per migration

InstanceTypes

- Completion timeout

Bootable volumes

Auto converge

» Labels

Post-co
MigrationPolicies Py Yes v @

- Define scope e B o[-

Networking

Completion timeout - ol 4 =)
Storage
Labels
PersistentVolumes
PersistentVolumeClaims Project labels
StorageClasses Enter key=value

VolumeSnapshots
VirtualMachinelnstance labels

VolumeSnapshotClasses

Enter key=value

VolumeSnapshotContents

Builds

Implementation in QEMU-KVM

» Precopy migration

» Postcopy migration

Precopy migration

With shared storage, only migrate VM states, including all the device states
» Iterative device
Send states over several iterations
E.g. RAM, VFIO device(Only Nvidia for now)
Dirty page tracking
» Non-iterative device
Send at once
E.g. network device, input device, virtio balloon device

vmsd (VMStateDescription)

Precopy migration

» Stagel - Precopy phase
Source VM keeps running
Start dirty page tracking once migration starts
Send dirty pages iteratively
» Stage?2
Stop source VM once the expected downtime condition is met after last iteration
Send remaining dirty pages
Send non-iterative device states
» Stage3

Resume VM on destination host

Precopy migration

» Downtime

Default 300ms

Can set manually before migration
» Switchover condition

Pending_size < threshold_size

Threshold_size = bw * downtime_limit

» If dirty page rate >= bw, precopy never ends

(gemu) info migrate

globals:

store-global-state: on
only-migratable: off
send-configuration: on
send-section-footer: on
clear-bitmap-shift: 18
Migration status: active

total time: 11356 ms

expected downtime: 300 ms
setup: 7 ms

transferred ram: 1505645 kbytes
throughput: 1082.15 mbps
remaining ram: 5028756 kbytes
total ram: 8409672 kbytes
duplicate: 470584 pages
normal: 374645 pages

normal bytes: 1498580 kbytes
dirty sync count: 1

page size: 4 kbytes

multifd bytes: O kbytes
pages-per-second: 33030
precopy ram: 1505643 kbytes

(gemu) info migrate

globals:

store-global-state: on
only-migratable: off
send-configuration: on
send-section-footer: on
clear-bitmap-shift: 18
Migration status: completed
total time: 16673 ms
downtime: 51ms

setup: 7 ms

transferred ram: 2211905 kbytes
throughput: 1087.24 mbps
remaining ram: O kbytes
total ram: 8409672 kbytes
duplicate: 1591045 pages
normal: 548339 pages
normal bytes: 2193356 kbytes
dirty sync count: 5

page size: 4 kbytes

multifd bytes: O kbytes
pages-per-second: 33544
precopy ram: 2181585 kbytes
downtime ram: 30039 kbytes

Migration statistics for RAM

Postcopy migration

» Stagel

Stop VM on source host, transfer device states(except RAM) to destination host
» Stage?2

Start VM on destination host
» Stage3

Transfer RAM info from source to destination host

Live migration features in QEMU-KVM

> generic migration

> postcopy

> postcopy-preempt
> multifd

» auto-converge

> zero-copy-send

> Xxbzrle

» tls encryption

Live migration features in QEMU-KVM

postcopy

postcopy enables VM starts running on the destination host as soon as possible, and the RAM from the

source host is transferred into the destination over time

Advantage: 1) minimal downtime; 2) migration always converge with any workloads

postcopy-preempt

postcopy-preempt is an optimization for postcopy migration, it allows urgent pages (those got page
fault requested from destination QEMU explicitly) to be sent in a separate preempt channel, rather than

queued in the background migration channel.
Advantage: besides postcopy 1) and 2), 3) reduce the latency of page faults, improve VM performance

Postcopy-preempt are recommended to use when migrate a huge VM on the stable environments

Live migration features in QEMU-KVM

multifd

Multiple File Descriptors enables parallel memory page transfer using multiple threads.
Advantage: 1) increase the CPU&bandwidth utilization to accelerate migration convergence

multifd is recommended to use on multi-core CPUs and high-bandwidth networks (>=10Gb/s)

auto-converge

auto-converge provides a method by dynamically throttling the VM'’s CPU speed to reduce the rate of

dirty page generation, ensuring that migration can eventually complete.
Advantage: migration can converge with high dirty page rate VMs

auto-converge is recommended to use for VMs with high dirty page rates, but no strict performance

requirements

Live migration features in QEMU-KVM

zero-copy-send

zero-copy-send avoids multiple copies of data between the kernel buffer and the user space buffer.
zero-copy-send is used with multifd.

Advantage: 1) reduce CPU overhead and bandwidth consumption; 2) accelerate migration completion;
xbzrle

xbzrle is a compression algorithm that reduces the amount of data to be migrated by compressing

duplicate data in memory, significantly improving migration efficiency.

Advantage: handle large amounts of duplicate data or similar patterns in memory

Live migration features in QEMU-KVM

tls encryption

The migration |/O transport code has been enhanced to allow the use of TLS to provide both data
encryption and authentication via x509 certificates

Advantage: protect guest memory and device state against modification or snooping by network based

attackers while migrating

Performance comparison between VMWare and KVM

Test environment

VMware: ESXi 7.0.3 and RHEL 9.6 VM

KVM: RHEL 9.6 host (kernel-5.14.0-570.4.1.el9_6.x86_64 && gemu-kvm-9.1.0-15.el9.x86_64), RHEL 9.6 VM
Hosts: Milan (AMD), 1.5T memory, 256 cpu, support 200G network

RHEL 9.6 VM: 128 vcpu, 300G memory, and play a youtube video during migration

Test scenarios

» Scenario 1. 500MB/s dirty page rate in VM, set migration bandwidth: 1280 MB/s
» Scenario 2: 1000MB/s dirty page rate in VM, set migration bandwidth: 5120 MB/s
» Scenario 3: 4000MB/s dirty page rate in VM, set migration bandwidth: 5120 MB/s

Note: when test multifd migration on KVM, set multifd threads to 5 in Scenario 2 && Scenario 3

Test results: VMware VS K\VM migration data

https://docs.google.com/spreadsheets/d/1M8LCFgNsdjSmCpqqsfpS8scDCLKye93REkQRNfvBKgY/edit?gid=1936975991#gid=1936975991

Performance comparison between VMWare and KVM

Migration total time comparison (s)

Scenario 1 Scenario 2 Scenario 3
VMware 380 117 222
KVM -
postcopy-preempt 278 160 341
KVM - multifd
KVM - generic
migration 294 153 -

Note: ‘-’ represents generic migration is not suitable for Scenario 3, no test on it

Performance comparison between VMWare and KVM

Migration bandwidth comparison (MB/s)

Scenario 1 Scenario 2 Scenario 3
VMware 1140 ~ 1144 2634 ~ 3694 2252 ~ 2314
KVM -
postcopy-preempt 700 ~ 900 1000 ~ 1200
KVM - multifd
KVM - generic
migration 1340 ~1370 2062 ~ 2875 -

Note: ‘-’ represents generic migration is not suitable for Scenario 3, no test on it

Performance comparison between VMWare and KVM

Migration downtime comparison (ms)

Scenario 1 Scenario 2 Scenario 3
Unknow
“Stopping pre-copy: only xx pages left to send, which can be sent within the
VMware switchover time goal of 0.500 seconds” in vmkernel.log
KVM -
postcopy-preempt

KVM - multifd 334 470 517
KVM - generic

migration 384 631 -

Note: -’ represents generic migration is not suitable for Scenario 3, no test on it

Performance comparison between VMWare and KVM

Video stuck

Scenario 1

Scenario 2

Scenario 3

VMware

No

Yes (2s)

KVM -
postcopy-preempt

Yes (5s)

KVM - multifd

No

Yes (3~4s)

KVM - generic
migration

Yes (3~4s)

RHEL-83883 - Video stuck after switchover phase when play one video during migration

» RCA: vcpu may have some execution delay, or network recovery process delay

Note: ‘-’ represents generic migration is not suitable for Scenario 3, no test on it

https://issues.redhat.com/browse/RHEL-83883

Performance comparison between VMWare and KVM

Ping packets loss: transmitted/received

Scenario 1 Scenario 2 Scenario 3
VMware 525/524 147/147 508/507
KVM -
postcopy-preempt 355/355 359/359 402/402
KVM - multifd 311/310 88/87 104/103
KVM - generic
migration 303/302 163/163 -

Note: ‘-’ represents generic migration is not suitable for Scenario 3, no test on it

Thanks!

